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GLOSSARY

1. The Tolerance Distribution

3.
x : a dose level

F(x) a tolerance distribution

f(x) F I(x)

f (n)(x) the nth derivative of f

L the mean of the tolerance distribution

x the mode of F

x5 the median of F

a the standard deviation of F

R : the distance between the 20th and 80th
percentiles of F

fm f(xM), the maximm of f(x).

2. The Experiments

X. the ith dose level
1

n. the number of subjects tested at x.1 2.

n : the number of subjects tested at each x.

wher. -.e sample sizes are all equal

d the common distance between dose levels:

P' d/R

X the timiddle" dose level (Xoar-x 0+id,

ki tile number of dose levels on each side of
x 0tor the finite experiment0

a the distance on each side of x covered

by dose levels in the finite experiment:
a=kd
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N the total number of subjects tested in
the finit.- experiment: N-n(2k+l)

3. Observations and Estimators

r i  the observed number of subjects responding
at the ith dose level, xi

Pi the proportin of subjects responding
at the ith dose level: pimri/ni

xthe Spearman estimator

h. Information and Characteristics of Estimators

E ( ) denotes expectation when a random variable
appears in the brackets

V ( ) denotes variance

MSE ( ) : denotes man square error

B ( ) denotes bias

subscr~ptor k denotes finite experiment (doses x -x +idsa or k i-%O, l, +2, .... ±k). If no subscrIptoa or

k appears, the experiment is infinite
(doses x.-x +id, i-O, ±l, ±2,......). If
no condiiioRal notation concerning x
appears, x is taken to be randomly 8 hosen
on the int 8 rval (o,d).

E( ) : expectation with respect to x over the
0o interval (O,d)

subscript A denotes an asymptotic moment (see (6.3)

and (9.1))

the value d V is shown in
section ... 3 to approximate V(i) and is
defined in section 6.3 to be the asyrptotic I
variance of i for the infinite experiment

I : information for scale parameter known

element in the inverse information matrix
corresponding to jL when the s cale paramter
is unknown
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denotes efficiency relative to I if no
estimr'tor follows in brackets. E(x )
denotes efficiency conditional on x .

0
El l denotes officiency relative to I l



1

1. INTCDUCTION

1.1 An Enale of a Quantal Assay:

In certain experimental situations it is impossible to

measure the variable on each experimental unit directly, but

it is possible to fix1 a number for each unit and then deter-

mine simply whether or not the experimental unit has a measure-

ment greater than this number. This type of experimental situ-

ation is found in a variety of fields of biological investiga-

tion. The following example from hormone assay illustrates

the nature of the problem(13).

Some estrogenic preparations are extracts from the urine

of pregnant mares. These preparations are mixtures of several

estrogens. The estrogenic strength of such extracts can not

be measured analytically in a satisfactory way. It is known,

however, that if sufficient estrogpnic substance is given to

immature or spayed female mice, they will show cornification

of the vagina. If a fixed dose of the preparation is given

to a test animal and cornification is observed, all that is

known is that the dose administered was at least as great as

the 'tolerance t of the mouse to this preparation. If no

cornification is observed, there is no way of knowing how

iIn some applications this number can be fixed only with

appreciable error. This case is not considered in this paper,
but has been discussed by Haley (21) for certain parametric
formulations.
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much higher \he dose would have had to be to induce the

response. it is desirable to estimate the man tolerance

of a group of test animals to the preparation on the basis

of such data. The mean tolerance and the strength are in-

versely related. Other exmiples of this assay situation can

be found in insecticide research (7), vitamin research (20),

vaccine screening for safety (25), and toxicity evaluation

of various chemicals (27). The quantal assay situation can

also be found in industry in munitions testing (14) and

reliability testing (30) among other applications.

1.2 Terminoloxy

The variable under investigation will be called the dose,

The dose may be a direct measure of the stirlus (e,g. con-

centration of an injection) or it may be some transformation

of this direct measurement (comonly the log of the measure-

ment). The experimental units will be tested at various

doses. The observation on each unit will be either a response

or a no-response. All-or-none responses are called quantal

responses in biological experiments. The experiment is a " -

3uantal assay. The probability of response depends on the

dose. The function relating the probability of response to

the dose level Is the tolerance distribution or dose reponse

function.

1.5 The Emiment and ]Wdal

The usual quantal assay is done in the following manner.

A set of dose levela is chosen. The test subjects to be used
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in the experiment are randomly allocated to the dose levels.

The number of responses among the subjects in each dose level

group is used as the basis for inference.

The test animals should be randomly selected from a well-

defined population of subjects. The dose response function

is descriptive of this population. The stability of the dose

response function over time must be investigated (3).

The notation used in this paper will be as follows:

x denotes a dose level

F(x) denotes the dose response function, i.e. the

expected proportion of responses at dose x

x. denotes the i dose level used in the experiment,

i-O, ±1, ±2,0..

ni  denotes the number of subjects tested with dose x i

ri denotes the number of subjects responding among the

ni subjects receiving dose xi

Pi denotes the proportion of subjects responding among

the group of subjccts receiving dose x, Pi- ri/ni

The assumptions concerning the dose response function

and the observations a re:

F(x) is a distribution function

F(x) has a first moment, x, called the mean tolerance

The observations on the subjects are mutually independent

The observations are the dichotomous quantal response vari-

ables. A set of sufficient statistics for the experiment oarists

/
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of the numbers of responises, ri, among the subjects tested at

each dose level. The ri are mutually independently distributed

binomial variables with means niF(xi), i-O, ±1, ±,.., .

The primary problen in this paper is the estimation of p.

on the basis of the experiment described above. Some bio-

statistical writers (4, 5, 6, 8, 10, 15, 16, 17, 18) recommend

parametric estimators for this problem, i.e. estimators which

necessitate the specification of a functional fbrm for the

dose response function. One function used frequently is the

normal tolerance distribution:

F (x; ,a t 2  dt (1.1)

J

This paper presents an evaluation of the Spearman estimator,

a nonparametric estimator of p.

2. THE SPARMA2N ESTIMATOR

2.1 Definition of the Spearman Estimator

The estimator to be discussed in this paper was des-

cribed by Spearman (28) in 1908. He gives credit for the

idea to the German psycho-physiologist, Muller. The esti-

mator was described again by Karber (23) in 1931 and is

occasionally referred to as tht- Spearman-Karber estimator.

Spearman defLned the estimator for regularly spaced

dose levels, xiox0 +id, i-O, ±1, -2, ... , and equal num-

bers of subjects tested at a finite number of dose levels,

say ni-n for i-0, ±1, 2, ...±k. The estimator is
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k-1L (Xi + d/2 ) (pi "pi ) "

-k

x is analogous to a grouped mean for continuous data.

Spearman computed this estimator only when P-k - 0

and Pk - I. Inpractlc4 the following modification is used:

d k-1 d d
P-k(x--k /2 ) + -k (xi+ /2) (Pill-Pi) + (l'Pk)(Xk+/2) (2.1)

Thus any estimate of probability, P-k' below the lowest dose

level (xk) for which n/ 0 is assigned to the point half a

dose interval below the lowest level; and the estimate of

probability, l-Pk, above xk is handled similarly.

Armitage and Allen (2) extended Spearman's definition

to unequally spaced dose levels, xi:

k-I x. i+
z ( 2+ ) (Pi+lPi) (2.2)
-k

This definition can be modified to allow for estimates of

probability below Xk and above xk .

Irwin (22) and Finney (15, 16) discussed an experiment

in which subjects would be tested at an infinity of dose

levels. This experiment called for ni=n and xi=x0 +id,

i-0, ±1, ±2,.... with x0 and d chosen arbitrarily. (See

Appendix I for a discussion of the resulting infinite

sample space.)

If ni14D for all i and x. are chosen so that x,--- as

i--4 and xi- -AS as i1-4- , then the estimator can be

defined as the lirit of R defined in (2.2) as k-->-
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-i (2.3)

The following experi-mental designs will be considered:

(a) x. a x + id with n. - n for i -O, -l, ±1 2, ... ±k
0 1

and ni a 0 for i ±(k+l), ±(k+2),.... (b) x. x + id

with n, - n for i 0 O, ±1, ±2,....... The first experi-

ment will be referred to as the finite experiment and the

second experiment will be referred to as the infinite exper-

iment,

Noter The Spearman estimator for the finite experi-

ment (2.1) can be expressed in several ways:

d k
'.aX 2 -d Z-k Pi (2.4)

d k 0
x+ d Z qi -d Z p. (2.5)o 1 -k

qi -1 -i

2.2 The Mean and Variance of the Spearman Estimator for the Finite

Experiment

The exact mean and variance of the Spearman estimator

for the finite experiment and fixed x are:0

k-i
S(ilXo) -(X.k-d/2 )F k+ Z (x,+d/2)(Fi+l-Fi)+(xk+d/ 2 )(lFk)

-k

where F. = F(xi) (2.6)

2 k
Vk(3xx) - Z Fi (1-F)

0 -k i (2.7)

As an illustrati n (Table 2.1), the bias and the variance of

the Spearman estimator have been computed for a normal tol-

erance distributi.. '1.1)4 The ex.peruentaZ desij-n cuwslsts
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of five dose levels, two standard deviation units apart,

with n subjects at each of the five levels. ,h bias a d

the variance of the estimator depend on thr ocation of

the dose mesh relative to the mean of the Aerance dis-

tribution. Therefore the bias and variar.3e were computed

for several locations of the dose mesh. The location of

the dose mesh is indicated by the distance of the middle

dose, x0 , from the mean of the tolerance distribution, ,

in standard deviation units.

When the mean is within the interval spanned by the dose

levels, the fluctuations in the bias and the variance as

functions of the location of the dose mesh are negligible.

When the dose mesh fails to cover the mean the bias becomes

large and the variance goes to zero. The mean square errors

for the case of n equal to ten and to one hundred are also

shown in Table 2.1.

2.3 Comparison of the Spearm .Estimator with Parametric

Competitors

It is clear from the above introduction to the Spearman

estimator that it has certain advantages over its parametric

competitors:

a) The Spearman estimator is simple in concept, being just

the mean of a histogram reconstructed from the quantal

data.

b) The Spearman estimator is simple to compute. It involves

only the sum of the observed proportions (2.4). The
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Tablo 2.1

The Bi~sp ',riance and M an Square Error of the Spearman Estimator
(2.1) of' the Mean of a hormal Tolerance Distribution, Using Five

Dose Levels Spaced 2o Apart

0.o Bias nVk(X i xo nSE Ek (5 1xo)/a 2

a n-lO n=100

o 0 1.178 1.178 1.178
.2 -.003 1.166 1.168 1.169
• -. OOh 1.14h 1.144 1.146
.6 -.005 1.114 1.114 1.117
.8 -.003 1.089 1.089 1.090

1.0 0 1.078 1.078 1.078
1.2 .003 1.089 1.089 1.090
1.4 .005 1.114 1.114 1.117
1.6 .005 1.144 1.144 1.147
1.8 .003 1.168 1.168 1.169
2.0 0 1.178 1.178 1.178
2.2 -. 003 1.168 1.168 1.169
2.4 -. 004 1.143 1.143 1.145
2.6 -.oo4 1.112 1.112 1.114
2.8 -.001 1.086 1.086 1.086
3.0 .003 1.073 1.073 1.074
3.2 .008 1.078 1.079 1.084
3.4 .o14 1.095 1.097 1.115
3.6 .021 1.112 1.116 1.156
3.8 .031 1.114 1.124 1.210
4.o .46 1.089 1.110 1.301
4.2 .069 1.030 1.078 1.506
4.4 .10)6 .936 1.048 2.060
4.6 .158 .815 1.o65 3.311
4,8 .229 .678 1.202 5.922
5.0 .320 .539 1.563 10.779
5.2 .432 .410 2.276
5.4 .563 .299 3.469
5.6 .710 .208 5.249
5.8 .872 .139 7.743
6.0 1.046 .089 11.030
6.2 1.228 .055
6.4 1.416 .032
6.6 1.609 .019
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parametric estiriation procedures ordinarily involve

either an iterative solution or a eighted regreseion

solution.

c) The exact mean and variance of the Spearman estimator

are easily obtained for any size sample. Therefore

experimental design investigations are readily done.

In contrast, only symptotic theory is available for

the parametric estimators.

d) The Spearman estimator is nonparametric in that no

functional form need be assigned F(x) in order to com-

pute the value of the estiate from the data. How

important this point is depends on the robustness of

the parametric estimators. Some relevant results are

presented later in this paper (section 9).

2.4 Examples of Tolerance Distributions

The tolerance distributions in Table 2.2 serve as illu-

strations throughout this paper. The first four distribu-

tions are used in practice. The remaining

distributions are to illustrate specific points (see

sections 4.2, 4.3, 5.4, 7.3, and 7.6).

3. THE INFINITE EXPEI=KN : THE nEAN AIUD VARIANCE OF THE SPEAR-

MAN ESTIMATOR

3.1 The Infinite Experiment

Irwin's (22) and Finney's (.5, 16) concept of an iufinite

experiment (section 2.1) makes possible a mathematical dis-

cussion of the effe ct of the location of the dose mesh on
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Table 2.2

Tolerace Distributions

NAME FUNCTlONAL FO*4 VARIANCE

1. 1orli(l 1 ') "t2/2 dt; -w <ixc 1

2. Logistic 1 +e-1(x '4) 1; - o<X<O i

3. - ,nul.sn2[p(X-A) +*,,/ -,,/4(X-,)IN/4 W2_8

.e2160

4, one-Particle 1--X 1 ; >0 I

. nifor, P(x-)+ /2 l/.0(z ,) <. 3/2 1
2 12=0

6. Almbraic 1-i tol, fic a
(,,-2) (6_1)2

7. Student's we f -o<x<wc,e>O 2e+l

t2 )1+e

Note 1: For the algebraic distribution the mean is e7 .

For the other distributions the mean is p.

Note 2: For the first five distributions 1 mst be positive and

the variance exists for all f. For the last tvo
1

distributions the variance exists only if 6>2 and et

respectively.



the bias and the variance of the estimator without discussing

the possibilities of grossly misplacing the whole set of dose

levels relative to p . The concept of the infinite experi-

ment also facilitates the development of large sample defini-

tions of mean square error and efficiency in later sections

(6 and 7). The investigation of the infinite experiment

has practical importance since it is shown in Appendix I

t1at the information for the infinite experiment is essential-

ly the same as that -'or the corresponding finite experiment

covering "most" of the range of F(x).

3,2 Mean and Variance of the Spearma Estimator for the Infinite

Experiment

Lemmas 3.2.1, 3.2.2, and 3.2.3 establish conditions

under which the Spearman estimator has the following mean

and variance:

E(ixxO ) - Z(x1+d/)F~-i (3.1)

d2

V(xx O) =- ZFi(l-Fi) (3.2)

Using (2.5), the estimator is:

kUn{ x0
k-400 1 -k l

Similarly
OD 0
Z(X i+d/2) (Fi+l-F'i ) -' xold/'+dZ(1-F i)-dZFi (3.4)

1 2 +111 -06

Levma 3.2.1: If F has a first monirt, [, then the series
so 0

,+dl2 dZ(,-Fi)_d(3.5)
1

converges to a finite value.
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m 0

Proof% The lemm is established if dZ(I-Fi) and dZFi
1 .W

are shown to converge to finite values. Consider the

remainder for dZ(l-Fi) :
1

d : (1-F i )  (1-F)dx
k+l

xk

Interchanging the order of integration on the right:
d I. (1-Fi ) " tdF(t)
k+l

If F has a first moment, the integral on the right goes to

zero as xk becomes infinite. Therefore dZ(1-Fi) is finite.
o 1

Similarly d..Fi can be shown to be finite. Q.E.D.

Lemma 3.2.2: If F has a first moment, then the series

ni((1-F) (3.6)

converges.

Proof: In the proof of Leia 1,2.1 it was established that

Z(1-Fi) is finite. Since 0 - Fi(l-Fi) = 1-Fi the series

- 0

IZF.(-Fi) also is finite. Similarly ZFi(l-Fi) is finite,

32 a
and,~ ~~ thrfoe -ZiI ) is finite. Q.E.D,

Lama 3.2.3: If F has a first moment., the Spearman estimator (3.3)

for the infinite experiment converges with probability one

to a random variable with mean and variance given by (3.1)

and (3.2).

Proof: Lemnas 3.2.1 and 32.- prove the convergence of the

series in (3.5) and (3,6). Theorem 2.3 in chapter III of
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Doob (12) establishes the sufficiency of the convergence

of these two series for the convergence of i with probabil-

ity one, and shows that the expected value and variance of

are given respectively by (3.5) and (3.6), or, using (3.4),

by (3.1) and (3.2). Q.E.D.

The variance of the Spearman estimator is not zero even

though the number of observations is infinite. Similarly,

it is shown in Appendix I that the information contained in

the infinite experiment is finite in the common parametric

formulations.

EFFECT OF DOSE MESH LOCATION ON BIAS AND VARIANCE OF THE

SPEARMAN ESTIMATOR IN THE INFIi7ITE EXPERIMENT

2 General Discussion

In the infinite experiment the expected value and vari-

ance of the estimator depend, in general, on the doses,

xi-xo+id, i-O,±l,±2,..... For a particular spacing, d, the

expected value nd variance will be simply functions of x

with period d.

Finney (15,16) has computed the bias and variance for

normal and logistic tolerance distributions. Since the Spear-

in estimator is nonparametric, it is desirable to have infor-

xmtion on the bias over a vride class of distribution functions.

It is possible to find bounds for the bias, distributions that

mraudmize the bias, and conditions on F(x) that limit the bias.

Bounds for the fluctuation in the variance can also be obtaineL

.2 boods on the Bias of the earnan Estimator



4.2, I Expreosdon for the Bias

The bias of an estimator is the difference between its

expected value and the parameter estimated. Denote the

bias for the Spearman estirntor for the infinite

experiment, conditional on x0 , by B(iExo). Using (3.1):
B(ilX) - E(ix 0)-11

0

Z(X d 2)(i+ )F SxdF(x)

CO d -xi+l
11

=Z(x i+d/2-) (Fi+l-F i) (4.1).- M -W Jx.

-( i d2 i F+- (4.1)
- x i+ l

xdF (x)
where C = -x ", (4.2)

x I i +l

dF(x)
X.

4.2.2. Bound on the Bias

From (4.1) it follows that:

Lemma 4.2.2
--

4.2.3. Tolerance Distributions :r which the Bound is Attained

The bound given in ("'.3) is attained, e.g. the one

point distribution. In this case when one of the dose levels

coincides with the mass point of the distribution, the true

mean of the distribution equals the dose level, but the esti-

mator has an expected value d/2 units below this dose level

(at the midpoint of the dose interval zhowing the probability

increment). This example in .icv.tes that for any distribution
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function, if d is large relative to the dispersion of F(x),

the bias can be approximately d/2.

Even if one excludes the one point distribution a bias

o d/2 is attainable. Consider the class of discrete dis-

tributions with mass points on a lattice with spacing D.

Then if the dose mesh has d-D/m, m a positive integer, and

if the dose mesh is located so that the mass points coincide

with dose levels, then each ci  (4.2) has the value xi and

B(I Ixo) z(F i Fi d
2i+l

4.2.h. Bound on the Bias for Unimodal Distributions

The situations discussed in paragraph [.2.3 do not occur

often in practice. in this paragraph F(x) is restricted to

functions with the usual properties possessed by tolerance

distributions.

Lemma h.2.4. If F(x) h-s a unimodal density with maximum ordinate,

f M then

-(xo) - fm (h.4)

(Unimodality means the dens-', f(x), is non-decreasing for

x less than the mode, xm, an. non-increasing for x greater

than the mode.)

Proof: The bound can be obtained by examining the terms in

the expression for the bias (4.1).

Let I .(xi, xi+l) be an interval located above the modal

value Xm. so that f(x) is non-increasing in Ii . Then, using

C as defined in (4.2),
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c. xi+d2 no matter what the density f(x) is in IY.

For the given probability F i-Fi associated with I.

the minimum value possible for c i is attained for the

density, g:

g() -fi . = x X.+Rd

g(x) -fi+l xi+Rd < x i+ 1

R is determined by:

x i+l

g(x)dx = Fi+l-Fi

xi

i.e. Rd(fi-fi+l )+df i+ = Fi+l-Fi  .

For the minimizing density, g(x), the value of c becomes:

x+Rd),-,d _-a~ifi~) ( d/2)fil

iC. 1 i+1 1 / ~
Cig

Since c. for the density f(x) is bounded below by cig and

above by xi+d/2 , the bias term for Ii  satisfies

< d C idO (xi+d/2 - ci)(F+i-?) - (xi+/ 2 - cig)(Fi+l-Fi)

The term on the right can be evaluated in terms of d, R,

and the values of f(x) to o~tain:
o < (x+id/2 _ ci)(Fq 1 i) < R (

_ 7 _ - R(1-R)(f i-f i+ l )

Since 0 a R - i, this inequality can be relaxed to obtain:
a 2

0 (x i/ 2 - ci)(F l-F 4 ) - d  ij+

(fi..... .(...6)
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Similarly,* for intervals below the mode, the following

inequality is obtained:

d8 ( fi41-) (xii / ca)(pi+l-Fi)5 o (4.7)

Also, for the interval containing the mocde, say (xo, 1)0

the inequality obtained is:

-d 2  ; X+/C)F-O 'd 2 (48
1(fm-fo) - 0X +d2"° 'o 0 U- (f 'fi) .8

Then (4.6), (4.7), and (4.8) combine to give a bound on the

sum of the contributions to the bias from all of the intervals:

d 2 co(- M -fi + , d2
1 I- (fi'fi~l)

IB(!jx o) max (4.9)

d 2  0 d2
7- (fm' fo)37 T- F- (fi+l'fi)

-O

0o 0
Then, since E (f-fi+l)-fl and Z (f, -fi)-fo# the bound is

I -co

IB~lxol Sd
2

Q. E. D.

4.P.5. Unimodal Tolerance Distibutions for Which the Bound is

Atained

The bound (4.4) is attkined for certain unimodal densities.

Convider the following example: Let f(x)-l for Oxl, f(x)-O

otherwise. Let the dose interval) d, be given by:

da 1  - (N a positive integer)

Ne + Ten

Let xo-O. The the dose levels will be given by:
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-1 0 1 N N+l

+ "+ N+'N* / 2  N4/ 2  2 2 /2

for all intervals except the one containing the point, x-l,

f(x) is uniform and c ixi+d/ 2 so that the contributions to

the bias are zero. For the interval containing x-l, i.e.

the interval

N N+I

N+1 /2 N+/2 )

the contribution to the bias can be computed as follows:

N 1 i+1 N N+l/4+ - ( , w . ) ) 1
XN 2 2 ' _L/2 N+1/2  1 /2

x + /2=1

N(Rl 2
1

B(flxN)= -/2 + )  (N+ /2) 8

o11 (N
This is the bound given in ('j4.4) since d= " and f -1.N+i1/2

The uniform cIistribution has the properties of s yrmety

and only two points of inflection. Therefore, these pro-

perties do not lead to a stronger bound on the bias of the

Spearman estimator.

h.2.6. Bounds on the Bias for Distributions in Terms of

Derivatives

The example of the uniform distribution in paragraph h.2.5

suggests the contributions to the bias of tha Spearan esti-
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mator come from discontiniities and rapid rates of change

in the density function. Bounis on the bias can be tight-

ened with bounds on f'(x) or higher derivatives.

Lerma h.2.6 If F(x) is differentiable s tires, F(x) is symmetri-

cal, and f(n) (x) has limit zero for x-*+- and for x---,

n-O,l,2,...s, then

IB(ijxo)j)= sur. IP n+l(X) dn l  I f(n)(x)Idx (h.lO)
-a,

n-O,l,2, ... s

f(n)(x) is tie nt h  derivative of f(x)

(See Appendix II for.' definition of Pn (x)--the nth Bernoulli
function).

Proof: Let 5 be the Spearman estimator for a finite number

of dose levels, x =V +id, i=O,±l,±2, ...,±k. From (2.5):

k
xk-Xo-d z(pi- / 2 )-k

kE(Rklxo)=Yo-dZ(~,i 2
-k

Then by the Euler-MacLaurin formula (see Appendix II):

E(Skjx )=xo-d[ (F(x+xd) d')cx

+12 (x+kd)- 1 2  + 1 (F(x -kd)- 1/2)

-d Pl(x)f(xo+xd)dx (h.ll)

-k
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From (2.6) and (.I) it is seen that E(jxo)- 0 ira E(l i x0 )
k--+-

First consider The limit of the middle two terms within the

brackets, i.e.,

1 [F(x 0+kd)-I+F(xo.kd

Since F is a distribution function, the limit of this expression

as k becomes large is zero.

The first integral in (4.11) can be rewritten:

( k 

-+kd+(xo-

[F 0+xd- 21 x I [F(yr).I/21 dykFX+d)I2 dx -kd +4X-11)

F ( -(y)l/ dy

V+kd+ (x -k)

d d )F(y)-/2 1dy

It+kd- (xo-)

(Since F(y) is assiued synxetic, F(y) - will be an odd

function with respect to y-4.) Consider the limit of this

integral as k becc-.mes larg,.. The length of the interval of

integration remains constat . The value of the integrand

1
approaches 7. Hence,

+kd+ (x o-)

lim ! F(y)-I/2 x-

d



Substituting the limiting values obtained thus far in (4.11),

the expression for E(Ix 0 ) becomes:

kE(:Rlxo- i E(Rkixo)-4 lir d 2 PI(xlf<xo xd)dx

Thus the bias can be bounded as follows:

B(ilx 0 )1 sup)I P, (x) I d f £(x) I dx

Before taking limits the integral involving P2 and f could

be integrated by parts, ma:ing use of the relationship:

Pn (x) _ (-1)- P n-.l(x)

Repeated integration by parts would lead to the general

expression of (41.O). Q.E.D.

4.2.7. Expressions for the Bound Involving Derivatives of the

Tolerance Distribution

When the bound (h.lO) is cvaluated for n-O and n=l, the

results are respectively:

IB(i)t (d/2

IB(i)I "d
d2 fm

The first bound is identical with the one obtained in

paragraph 4.2.2. without the assumption of symmetry. The

second bound is of the s&ne o:'der in d as that obtained in

paragraph 4.2.4 but the c ontant '6 is greater than 1/8.
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Lemw, 4.2.6 provides a sequence of bounds on the bias

in increasing powers of d. For example, if n is taken to

be 2, the expression for the bound becomes:

IB(R JxoA [sup in 32lXg3~ "x

From Appendix II:

sin k2tT x
sup z 2 3 = .oo80...
x o1 1

A simple expression for the integral can be obtained if the

density f(x) is assured to have exactly two points of inflec-

tion, x= ±c, with the absolute value of the derivative of

f(x) at these two points being fc " Then

-1 -C -C p+c
=0 44f'L+

c

Thus the bound for the bias, -_sing n-2, becomes:

IB(Rl.)li 0324d3 T(412

For a symmetrical density function with two

points of inflection, maximiun slope f I and maximum
c

ordinate f "m

Thus, for this class of densities, the bounds given in (4.4)
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and (4.12) can be combined to g. -.

Theorem 4.2.7

IB(~ix 0 )I~uin.(.l25df1 , -032d 3f$) (4.126)

4.2.8 CowputAtion of the Bounds on the Bias for Some Tolerance

Distributions

If d is expressed ir, units of the standard deviation or

some interpercentile difference of the tolerance distribution,

the magnitudes of the various bounds on the bias obtained

above can be more readily compared. Bound (4.3) becomes:

I B(1ixo)' 2 a (Pd) •

Thus to assure that the bias is less than, say, 10 percent

of the standard deviation of the tolerance distribution ,

d should be less than 20 percent of a.

If the bound (4.4) is to be used the BOW ordinate

must be specified. In Table 4.1 bounds on the bias, computed from

(4.4), are given both in terms of a and R. R is the distance

from the 20th to the 80th percentile. The bounds on the bias

in terms of a and R for the various distributions are quite

similar. For the four distributions, other than the special

one-particle function, a choice of dl.30 will assure a bias

of less than 10 percent of a,

The bound given in (4.12) can be applied to the first

three of the tolerance distributions listed in Table 4.1.
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Table 4.2 gives the bounds for the three tolerance distri-

butions in terms of both a and R. Note frci Table 4.2 that

if d- 2.8.q the bias of the Spearman estimator will be less

than 10 percent of c (using 4.12).

4.3 Effect of Dose Mesh Location on the Variance of the Spearman

Estimator

4.3.1. Bound on IV(Rixo)-Vl

Let x5 0 be the median of F(x) (or a median if F(x)W

does not uniquely determine x.50 ). Then F(t) (1-F(t)) is

non-decreasing for xx and is non-increasing for XX.50

Number the dose intervals so that x-X. 0  x I. Then

xi
F (t) 1-F(t)) dt <dr i 1-F i  i-O ,-1,-2,...

xi- 1

F(t) l-F(t dt xidF i  i -12. ..

x
ilx.

x
0

Combining these inequalities:

~ - - - -~--~ - - - --



25

Table 4.I

Bounds for the Bias of the Spearman Estimator

for the Infinite Experiment l/

Tolerance Bound for the Bias

Distribution as a Proportion of a as a Proportion of R

Logistic 0567 2a 1 2R

e R
Normal oh9 2a .0839( 2) 2

Angular .o27) .0oo4 2 R

Uniform .036292  .0750(~ 12 R

One-Particle .1250 2 V2.1732(t2 R

using (4.4) for the bound, I B(5Exl dFM
2/- a is the standard deviation of the tolerance distribution

and d - 1

R is the distance between the 2 0th and the 80th percentile

and d=i' R.
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Table 4.2

Bounds for the Bias of the Spearman Estimator for the

Infinite Experiment 1

Tolerance Bound on the Bias

Distribution As a Proportion of a 2/ As a Proportion of R -

Logistic .olol 3a .o568 3 R 3

Normal .0077 3a .0529 3 R

Angular .0075 3a .0639 3 R

!/using (4.12) for the bound, IB(R Ixo)I I .0323f

2/c is the standard deviation of the tolerance distribution

and d-Fa

2/R is the distance between the 20th and 80th percentile and

d-p R.

Note: Finney (15, 16) gives the actual maximum bias for the normal

and logistic distributions for various values of d.Far- .of

2, B=.005a for the normal distribution while the table

gives .062a as the bound; at P=3 Finney has B-.107 compared

with a bound of .208a in the table.

- - - - -
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Therefore the variance (3.2) satisfies the inequality:

V(i I) - F ) 1-F (x. d F(t)[1LF(t)jdt0 F-t) 1-t dt- -=

Sinilarly an upper bound for the variance of the estimator

can be obtained:

)Sd I F (t) [l-F (t)] d2V(Xlo) < [dt+

Let V be defined as:

d  F(tl-F(t) dt (4.13)
n

Then

,V(Rlx )-VI 2 (4.14)

4.3.2. A Tolerance Distribution for ich- Approximates

the Bound Arbitrarily Clcsely
(4.14)

The bound~.on the deviation of V(lxo) from 7 is the

suprenum. Consider the two point distribution with masses

of I at the points 0 and 1. Then F(x) has the form:

F(x) = 0 x <O

F(x) - 1/2 o

F(x)= = I X

Then

If d-l-e, i> e >O, then it is possible for two doses to lie

between 0 and 1. In this case,

-- 4
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V(5jX d2 (1.1 1.1) d 2

V(5Ixo) U + "' a2

V(Rlo)-V d2 ( 2 1

Therefore, as e goes to zero the deviation of V(5ix ) from

7 can be arbitrarily close to + d

Also, using the same example, but choosing d = l+e,

d 1

if no dose levels lie between 0 and 1, so that the deviation
d 
2

can be arbitrarily close to -

h.3.3. Bounds on tV( iXo)-V in TermB o't Derivatives

The Euler-YIacLaurin f r-ulae yield better bounds on the

fluctuation of V(ilx) due to the placement of Xc, when more

stringent conditions are imposed on F(x). If F(x) has a

continuous density (and the first moment of F exists, as has

already been assumed) then (see Appendix II):

- F (x +id) [l-F(-c = n (d) l-F(xxd x

- d Pl(x)f(xo+xd) t-2F(xo+0 i dx

or

RIX ix)-'7f1d P P(x)f(x +xd)[l-2F(x +xd)}dxj (4-15)
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Integrating by parts in (4.15), which is justified if F' is

continuous and if the resulting integral exists:

tV(Rih%)-7 I L4 ~P Wx) d f (x +xd) (L2F(x +xd))] dxl

First assume that F(I-F) has exactly two points of in-

flection, say at x-c 1 and at x=c 2 * Then the integrand is

positive for x (c1 and for x ) c 2 and negative for x between

c and c2* Then

If F is symetrical, then:

Also

<3
SV(Xn fr (4.16)

4.3.h Computation of Bounds on JV(:kX0 )-VJ for Some Tolerance

Distributions

To illustrate the magnitude of the bounds on IV(Xo)- )71

express d in units of the standard deviation or an inter-

percentile deviation of F(x) and express IV(ilxo)-Vlas a

proportion of V. Thus, using (4.14) and (4.16) "

lv(x 0)- (4.14a)

F F(x) (- x]d

3 m (.1a)

d2

f Vijxx ~-Fxd
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See Table 4.3 for numerical examples. From the second column,

if d is less than .ha then V(_Xo)____ I for each.... . =20 percent

of the five tolerance distributions. The fourth column indi-

cates that for the logistic, normal and angular distributions,

a d less than .8a assures that IV(ilxo)> 2 r=W 20 percent.

5. RANDOM LOCATION OF THE DOSE 11R9H IN THE INFINITE EXPERIMENT

5.1 Introduction

Random location of the dose mesh is accomplished for the

infinite experiment by fixing the dose interval d and randomly

choosing the dose level, x0 , from the uniform distribution

over the interval (O,d). Even though no effort is made to

randomly locate the dose mesh, in certain routine screening

procedures, at least, the tolerance distributions are essen-

tially randomly located with respect to the fixed dose mesh.

5.2 Unbiasedness of the Spearman Estimator

The expected value and variance of the Spearman estimator

for random choice of x will be denoted by E(i) and V(i).

Irwin (22) and Finney (15, 16) pointed out that when the

location of the dose mesh is selected at random the Spearman

estimator is unbiased. This is shown as follows:



Table 4.3

Bounds for the Relative Deviation of V(5I X) from V

Tolerance Bound on Vq o) -

Distribution V
First Bound Second Bound 1/

Logistic 4or . 2 2/ ,2 /or 2 2hL? o 6O~

Normal .4431 or .7h58 ' .2357 2 or .6677'2

Angular .4347 or .8183)' .19812 or .7020O'2

Uniform . 4330 p or" .9000, Not applicablet \
One-Particle .5000 or . 6 930 e' Not applicable

The first bound is ccr7uted from (4.14a) and the second

bound from (4.16a). (See Table 5.1 for the values of V

for tle several distrib tns.)

is the ratic of the (- e interval to the standard devia-

tion, d= a.

e is the ratio of the "ose interval to distance (R)

from the 20 th t e 8 0ti perc-xtile, d= '.
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I() E(RXo) dx (5.1)

0

d') = +d+d3

0 +iad/ 0X(+)
d (x° 0/2x+id)  F(x) x

0

0 d j x +id

=( 0 +id+) dF(x) dX
0 x +id

0

= ji. c dF(x)

(i~d 1 "d100 +"d/  /
z UFx dFxud

id+ d/ 2 d/
d

= dxdF(x)

5.3 The _ Mean Square Error of the Spearman Estimator

Let E denote the expectation with respect to x over
0

interval (O,d). Let B (,i-x0) denote the bias of R given xo.

The mean square error of the estimat or is the variance and

can be written:

= E ]V(RIx ) + B2( i x )]
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00

The f irst component of V(SE) in (5. 2) can be evaluated:

d

--d 1 d2x
Ex 0 I- n 0o

0

d
0 0 F(xo+id) l-F(x +id) dxn -0 0o

o

xo +(i+l)d

--- F(xj 1-Fx) d

x +id0

Note that (5.3) is the same as (4.13), denoted by V. Thus

V is the average of the conditional variance of R, taken over

the location of the dose mesh.

A simple exj're 'ion for the second component of V(i) has

not been obtained. The variance, V(x), is written:

v(X) 7 :(x) 1-F(x) Ix+E [B2(Ixo )  (
n X0

Using the bound for the bias over values of x in (4.3):
0

V(R) = V + 0(d 2 )

For tolerance distributions s-ttisfying the conditions given in

section 4.2.-7:

V(5) = V + 0(d6 )
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The second component of V(i) (5.4) is independent of n and

of smaller order in d than the first component, 7 . V con-

tains d only in the form of thefactor d/n , i.e. the inverse

of the nwnber of subjects tested per unit interval on the

dose scale.

5.4 Values of 7 for Severtl Tolerance Distributions

An approximation to the variance of the Spearman esti-

mator for the case of a normal tolerance distribution, given

by Gaddum (19), is equivalent to 7 . Finney (15, 16) com-

puted V for the normal and logistic distributions. Table 5.1

.gives thelalues of 7, as proportions of a and as proportions

of the distance from the 20th to 80 t h percentile (R), for

several tolerance distributions (see Table 2.2 for defini-

tions of these tolerance distributions.)

In section 4.3 it was seen that V can be regarded as a

good approximation to V(jxR 0 ), and that V(ix 0 ) can deviate
d2 0

from 7 by at most d/4r

In the present part V was seen to be less than the uncondi-

tional variance of i , where the error is slight if d is

small. In the next section 7 will be established as the

asymptotic variance of R, as defined in the same section.

6. LARGE SAMPLE PROPZ 'TIES OF ThTi SWARM&NESTIMATOR FOR THE

INFINITE EXPERII INT

6.1. Large Sanple Exr-erineits

The experi-e tal design for the infinite experiment

consists of fxi-..- two numbers: the num:ber (n) of subjects
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Table. .l

Values of 7 for Several Tolerance Distributions

Tolerance

Distribution

Logistic .5513 C 1.2881 I-n

2 2
Norma ~.! 2 ?a l.5983 I, -

Angular .575D - 2.0376 ' -

2 R2

Uniform .577 a 2.492

2 2

One-Particle .5000 C .9604 ' -

I = d F(l-F)dx ; these values were used in Table 4.3n

is the ratio of tne dose interval to the standard

deviation, d= a

3/b
? I is the rato of the dis -_nce (R) from the 20 t h to the

80th percentilE, d= IR
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to be tested at each of the levels, and the dist4ne (d)

between dose levels. Denote such a desin by D(n, d).

The large sample experiment is usually described in terms of

a fixed d and increasing n. For the Spearman estimator this

method of increasing the size of the experiment will not

yield a consistent estimator. The second component of

V(i) in (5.4) involves the conditional bias independent of

n, so that V(i) does not go to zaro as n goes to infinity.

This points up the need for a more general concept of large

sample experiments.

Let n' denote the average number of subjects tested per

unit ou the dose scale, (n1 'n/d). Then the large sample

experiment is obtained by letting n' go to infinity. The

choice of the correqponding values for n and " will be made to

minimize the mean square error for fixed n'.

6.2 Optimum Choice of n and d for the Spearman Estimator

For fixed n' and random choice of x0 the variance

of the Spearman estimator is minimized by choosing n and d as

small as possible, i.e., n-i and do'/.,. This follows

from the following theorem:

Theorem 6.2.1: The mean square error of the Spearman estimator

based on groups of n subjects tected at dose levels d

units apart is greater than the mean square error for

single subjects tested at dcee levels d/n units qrt.

Proof: Denote the tvo mean squexe errors by ME n and "0"

respectively. Denote the corresponding biases conditional

on x0 by b() and b(x re tive.

a - -0) - -- . - - -
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d _ fF(1.F)dx + E (b2(x 
(]

* " -o i o) (6.1)

WE a r v X0 (bix 0) (6.2)

The first teram on the right hand sides of (6.1) and

(6.2) are Identical. Therefore it must be shown that

Eotb 2(xO)) > Eo(b2 (x)3 (6.3)

The conditional biases can be written:

x0+id+

bn(Xo) a f (xo+id+d/2-x)dI (6.4)

x 0 +i-d

O n-l 0 n
b1 (xO) a E EJ(x +1d+- 4 d X)'1(

xo+id+ L
0

The left hand side of (6.3) Is:;

Xo4d

E~(b 2(x0)] b 2f b(x )dxO
xo

n-1 o+2  n

14B0 Ib( 0 )dx0
ed

X0+ 54

n-i n

" - ycf b(- +!n )odx (6.6)
X0



The expression bn(XO a~d
e"n ) appearing in the integrand of

of the right hand side of (6.6) can be rewritten in

terms of b 1 (xo). From (6.14):

ed
L0 - +id +dao Xo t d d n

bn (x 0 + f(x 0 + + id + d/2- x) dF (6.7)
im -o.>

xO -++id

S = U,1,2,...(n-1).

+ad+ id+ (J+i)d

O n-i n n

E r- (ZO + +id + d/2 - x)dF (6.8)
im -, JOI 

a

Xo+ id + j

o n n

Then, adding and subtracting + + d in the interand
n 2n

of (6.8)

+ id + ( +,+i)d
d Co n-i n

b xO+ d E [ fx + id + (j +)d+ ~-x]dF

xe+id+ (jn)

+ iOD - 1 (1 - -?Jo(\ ? dt - (6.9)

0)d) n

Fr=m (6.5), expression (6.9) can be written:
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bd Ad __

b(X+ b b(x0+ !d +- IE (1- -)A (6.10)n n n 2 J-0 n J+8

'0 + id + (J+,+)d

vhere Ai - EJ" i. -t (i ,) 4
z0 +id+ +

n-i
Note that E A - 1 for any j (6.31)

0

Since b is periodic with period d/n it follow, from

(6.10) that

sd n-i

br(x0+ - ) =b 1 (Xo) + Z (1- n )A (6.12)
n 2 J-O

Substituting (6.12) in the right hand side of (6.6):

d1 Xo + n

2~[b(x0 ) =1 lf b2(s) +

xo

n-1n-I(1- 2n)A 2 dxO (6.13)

On squaring the expression in the integrand in (6.13) the

middle term will be :



40

'0 +

n- ni.(1 - & Ul) A5  d (6.14)
$sj J J= n S x

ftming first on s the am of the Aj is one and the

su with respect to 3 viii then be zero. Therefore

(6.13) becomes:

E [b2(Z0)] E1 (b2(x) +

Sao 2 ~ ) )2O ndJ+ (6.15)

The second term on the right hand side of (6.15) cannot

be zero if F is a distribution function. Therefore,

0 n 010
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6.3 Large Sanle Properties of the Spearman Estimator

If n' is increased., with nal and dwl/n,. as

required, it follows from (5.4) and the fact that the

bias squared has a bound of order d2 , that the estimator

is consistent and the variance is

CO1V(i) -,fF(-F)dx40(l/ 12) (6.9)

-00

It is convenient, in the case of a sequence of

random variables, to approximate the variances by

simpler terms correct to order n "1 . (When the sequence

does not have variances, the variances of a sequence of

limiting distributions may be used.) Such a sequence

of approximations will be called the asymptotic variances.

In this sense the first term on the right of (6.9) will

be called the asymptotic variance of i and will be denoted

by VA(i).

VA(') 1, 1-Fd (6.10)
-OD



7. LARGE SAMPLE EFFICIENCY OF THE SPEARMAN ESTIMATOR FOR THE

INFINITE EXPERIMRT

7.1 Previous Comparisons of the Spearman Estimator with the

Maximum Likelihood Estimator

Finney (15,16) computed the asymptotic variances of the

maximum likelihood estimator, averaged over choices of xo,

for the finite experiment, for the normal and logistic tol-

erance distributions, and thon took the limit as the number

of levels went to infinity. He compared these values with the

man square error of the Spearman estimator over choices

of x for the same two distributions. The ratios were .981I4
0

and 1.0000 respectively.

Cornfield and Iantel (10) showed that for the logistic

tolerance distribution, the maximum likelihood estimator

and the Spearman estimator were approximately equal and this

algebraic approximation inproved as d--O. Bross (9) evalu-

ated sore sarpling distributions through enumeration for the

m=ximum likelihood estimator ana the Spearman estimator. He

used the logistic tolerance distribution, four dose levels,

with n-2 and also n=5. In all cases examined,

the Spearman estimator was concentrated more closely about

the true mean tolerance than was the maximum likelihood

estinmator. These computational results were reproduced by

Haley (21) for the normal tolerance distribution.
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These results indicate that the Spearman estimator

compares favofabl,) in precision with the maximum likelihood

estimator, at least for the normal and logistic distributions.

In this section the asymptotic efficiency of the Spearman

estimator is defined and various results are reported con-

cerning tolerance distributions that minimize or maximize

this efficiency. Efficiencies for the common tolerance dis-

tributions are given, the values for the logistic and normal

being the same as the ratios given by Finney.

7.2 Definition of Asymptotic Efficiency

The efficiency of an estimator can be defined in

terms of the quantity, I, called the information:

I = E( f)2

where f is the frequency function for the random variables

on which the estimator depends (11).

For the infinite experiment with random choice of x ,

the information is (see Appendix I):
O.

I = n  L F dx

The asymptotic efficiency, E, of an estimator for the

infinite experiment will be defined as the r atio of 1 /1 to

the asyptotic variance of the estimLator. For the Spearman

estiriator,
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E ,

VA(X)

- F(x)[1-F(x)] dx F(x)t1-F(x) dX

1/I is the asymptotic variance (n--*-) of the maximum

likelihood estimator, so that E measures the efficiency of

the Spearman estimator relative to the maximum likelihood

estimator.

7.3 The Spearman Efficiency for Several Tolerance Distributions

The f ollowing sections present computational results

for specific tolerance distributions. The results are

summarized in Table 7.1.

7.3.1. Logistic

The efficiency for the logistic is 1.0 since the logis-

tic distribution satisfies

F 2 F 2

F(l-F) = Fx

7.3.2. Normal

Finuey evaluated the efficiency for the normal tolerance
F2

distribution. The integral of k/F(1F) has to be obtained

through numerical methods. The result is E-.9814

7.3.3. Angular

For the angular distribution, both integrals are easily

evaluated and E-.8106.
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7.3.4. Uniform

The definition of E is not applicable to the uniform

distribution since the regularity conditions used in obtain-

ing I are not fulfilled. The particular difficulty is that

the distribution function is not differentiable for all values

of i (see Appendix I).

7.3.5. One Particle

The integrals for the one-particle distribution are:

'0 F(I-F)dx - -
n~ n 2

0 'F 2 _ y c
n - = I. - 2.ho43na
d F(l-F) d ad d

and the efficiency is .83191...

7.3.6. Algebraic

The above examples all involve distributions with first

moments for all values of the parameter. The algebraic

distribution (Table 2.2) does not have a first moment for all

values of the one parameter:

F(x; s) = l-x - s  s)l, x l
S

This distribution has a first moment with value s 1

if s> 1. For s < 1 the first moment does not exist.

d F(l-F)dx d s s) I
1n (s-1)(2s-)
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~I F 2 )
n dx - a 2(s- 4

d ~ S-1) z1
FI-F) k=l (ks-i)3

and

2-1/

E :

Thus, in contrast with the preceding examplesv E depends on

S.

lim E lira (2- 1/s) 1
s--l 2 -- 0 !ia (~/S)3

s--I k=1 (k-i/s)3

The li . in +he denominator is one since:

___s- G (s-l)3
z (s-)3 - lim (1+ )-

s--)l k= (ks_-) 3  s-41  k=2 (ks-1) 3

Also

lim E= .8319...

1 k3

Note that the limit of the efficiency as s becomes

large is identical with the efficiency for the one-particle

tolerance distribution. This might be anticipated by re-

writing the two distributions from Table 2.2.

Algebraic Distribution: l-(x+l) " s  x 0

One-Particle Distribution: 1-e"( - )x O
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The ratio of the ith moments of the two distributions is

(s-l) (s-2).. .(s-i)

(s-1 )i

This ratio goes to one as s becones large.

7.4 The Logistic Tolerance Distribution and the Spearman Estimator

Theorem 7.h.1:

The logistic tolerance distribution is the only symrmetri-

cal tolerance distribution, writh a translation parameter as

the single urknown parameter, for which the Spearman estima-

tor has full efficiency.

Proof: Let p. be the translation parameter and let the toler-

ance distributions be written F(y-.). The efficiency for a

given distribution, F, is:

2 WlF 2F(x(-~)

E(F)= dx F(x) I-F(x) dx

Let G be an extremal function (symmetrical, differentiable)

of the functional Y(F)- tE(F)1 -. Let V(x) be any function

satisf ring the conditions:

V(x)-V(-x) (7.1)

V(x) is differentiable for all x (7.2)

for all t in a neighborhood of t=O, G(x)+tV(x) is a

distribution function with first moment. (7.3)

Then y(t)Y [G(x)+tV(x)I is a function of t differentiable

at t-O, and y 1 (0)-0.
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Table 7.1

Large Somple Efficiency (E) of the Spearman Estimator for the

Infinite Experiment for Several Tolerance Distributions

TOLERANCE DISTRIBUTION EFFICIENCY

1. Logistic 1.0000

2. Normal .981h

3. Angular .8106

4. One-Particle .8319

5. Algebraic .500 < E < .8319

F(F-F)dx5 F) f

2/ See sections 7.3.1, 7.3.2, 7.3.3, 7.3.5 and 7.3.6 for

computations.
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Let G'(x) be denoted by g(x) and V'(x) be denoted by

v(x). Then

im m

2
y,-(o)- ( dx vl2-2G ) )

G(l-G)

+ 2"G(1 l- !vg2 (1-2G2l ) dx G(l-G) d

Since G has a symmetrical density and V is symmetrical, the

integrand of the following integral is an odd function and

2G ( 1-G)gv dx 0

G 2(1-G)2

Then

Y'(o)-' V12) C!- C2(!G) dx - O

where
as

1 j G(l-G)

c 2.. G(1-G)dx

V(x) can be any function satisfying conditions (7.1), (7.2)

and (7.3) and 1-2G(x) cannot be identically zero on the

infinite interval. Therefore the necessary cordition for

G(x) to be an extreial function of Y(F) is that
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G(X) I.-G(x 2

This implies that G(x) is of the logistic form:

G(x)- [l+e-(q+1x) -1

Q.E.D.

7.5 Distributions with Efficiency of the Spearman Estimator Close

to Zero

If F(x) has a first moment the variance of the Spearman

estimator exists, i.e. the integral with respect to F(1-F)

is finite. Then, if the information is finite, the efficiency

of the Spearman estimator is greater than z ero.

Distributions with a translation parameter as the single

unknown parameter can be specified for which the Spearman

efficiency is arbitrarily close to zero. Consider,

X
F ( ) K(e) dt -< x(-

-T O<e

The efficiency can be made arbitrarily small by choosing e

close to zero; V(e) is unbounded as e goes to zero, while

l(e) is bounded away from zero.

Consider the f ollowing bound for V(e):

V(e ) - d Fe(; 1Fe(; )Id

n
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- 2 Fe(x;o) l-Fe(x;o) dx

0

n t 1l-Fe (x;0)j1 dx

0 ( K(e)dt

o 1+2e
>d 1 K(e)dt

______I+ t dxn x Il+2e

> dK(e) I dt dx

1x

> dK(e) 1 1 (74)

n2~ 1+2e 2e

The constant K(e) necessary to make Fe a distribution is
1

greater than - for e< 1; therefore V(e) goes to infinity3
as e goes to zero.

!(e) can be written:F 2
I(e) I D )] , dx

\Fe(X; I -F (X;

To show that l(e) is bounded away from zero as e goes to

zero, first note that
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xF (M2 [ZF +K
~I -i,2e-I

Using the symetry of the integrand and F(I-F) <rn

I(e) -2 dx
F(1-F)

K 2(e)dx

Then the following inequalities are obtained:

I(e) > 81(e) x

> 8K 2(e) 1

22+2e xh+4e

8K2(e) 3

2' 3+4,

) 8 1 1 (75)

3 2 3+4e

It follows from (7.4) and (7.5) that E(e) goes to zero as

e goes to zero.

7.7 Two Parameter Families of Tolerance Distributions

The results of the previous paragraphs axe applicable

without modification to the case of scale paramter unknown
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when the tolerance distribution is syMetrical. (Estimation

of the scale parameter itself is duscussed in Appendix III.)

Let the tolerance distribution be of the form F(y)

where y- (x- ±). Let both 0 and L be unknown. The infinite

experiment information matrix is given in Appendix I.

Letting t"

tWdt

)Wdt

'(t.Al ) 2 Wdt

A2 - ___ __

Wdt

where W(t) .
F(t) [l-F(t)]

The inverse element, I , corresponding to L is

d A1 
2 + A2

n W(t)dt 2

Note that if AIRO, then I 1.1/1 when I is the information

for scale parameter known. If F is a syrmetrical distribution

then W(t) is ,rmretrical and AIMO.

Note also that if kilo, the effect is to increase the

value of i l l above the corresponding v alue for s cale parameter
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known. The variance of the Spearman estimation is unchanged.

Hence, Ihe efficiency for the Spearman estimator would be

greater in such cases for scale parameter unknown than for

scale parameter known.

8. THE SPEA1U11i ESTIMAIUR FOR ME FINITE EPERIMF2T

&.1 Finite Ezperimats

In previous sections (3, 4, 5, 6, 7) the range of experi-

mentation was infinite. The results obtained are useful in

designing and interpreting experiments in which the dose

levels cover the greater portion of the range of F(x), say

from .01 to .99. As a supplement to these results it is of

interest to investigate the effect of using a finite set of

dose levcls.

Lot x be an a priori estimate of ji and let the experi-

ment involve 2k+l dose levels regularly spaced over the in-

terval (x0 -a, x0 +a). The dose levels are xi=xo+id, i-0,

±1, ±2,...±k, with kd=a. Let N be the total number of sub-

jects used in the assay, N=(2k+l)n.

8.2 The Spearman Estimator

The variance and bias of the Spe-arman estimator are

. d2 k
Va(xljxo) n -Z F.(l-Fi) (8.1)

-k

dk-li
Ba(i Io - (x0-a-d/ 2)F(x,--a-/ 2)+ z (xid/2)(Fi+l-F i )

-k

+(xo+a+d/ 2 ) [I-F(xo+a4)j t (8.2)
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Theorem 8.2.1 Let the rango of dose lovels be (xo-aox0 a), tho

total samplc size be N, and the numbers of subjects at each

dose level be equal (n). Then the maximum variance of R over

all possible F is minimized by minimizing d (i.e. by maximiz-

ing the number of dose levels).

Proof: From (8.1) the variance of the estimator is

2 2k+1' k
x)Z F (-Fi) (8.3)

Fi(l-Fi) so that

2V (5Ex ) S a2(k l)
a 0k 2 N

The bound is attained for F(x) a two point distribution

defined b :

P(x=x -a-e) = / e) ooe o

P(x=xo+a+e) 1/2

The bound is minimized by choosing k as large as possible,

i.e. by choosing d as small as possible. Q.E.D.

There are distributions for which an increase in k results

in an increase in the variance of i. Consider the distribu-

tion given by:

P(x-x 0 -3/'/a)1/2

P(..x 0+3 /L a)=/1
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The variances for three and five levels are:

2
k-1 : Va(S I Xo)

4N

k2 Va 1i x0) -16N

The variance for the normal distribution for several

values of k is shown in Table 8.l.a. The results are for

xo-=. For the dose ranges used, the variance decreases as k

increases.

For asyrmetrical location (xo01) the Spearman estimator

will be biased. Table 8.1.b presents the mean square error

for the normal distribution for sevcral values of a, k, and

N, for sevcral values of x

8.3 Information for the Finite Experiment, Scale Parameter Known

Denote the information for the finite experiment described

in section 8.1 by Ia (x0 ). Then

iaX)"N k F 2 (ia

a 0 2k+l -kF(ia

Table 8.2.a presents the values of Na2i a(Xo) for the

normal distribution, for xo=j, for several values of a and

k. The results show that there are extreme situations

(three levels placed at p-lO, p., and p+lOo) for which an

increase in k results in a decrease in the information.

However, when a is 2a or less, the denser the dbse levels,
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Table 8.l.a

Variance (Va) of the Spearman Estimator for the Mean of a Normal

Tolerance Distribution, for the Finite Experiment

Middle Dose NV a ( I Xo)
Dose Range
Location

X 0 k k-2 k3 k-4 k-8 k20 k-40

O 1/2 .51 .36 .32 .30 .27 .25 .24

O 1 1.55 1.18 1.06 1.00 .91 .87 .83

0 2 3.54 2.81 2.58 2.51 2.36 2.25 2.19

0 4 12.00 5.89 5.0d 5.02 4.75 4.58 4.50

0 10 75.00 31.25 19.44 15.18 12.37 11.46 11.23

l/The number of dose levels is 2k+l.
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Table 8. l.b

Mean Square Error (MSEa) of the Spearman Estimator for the Mean

of the Normal Tolerance Distribution, for the Finite Experiment

Middle Dose' N [ ME(i I o)]
Dose Range 2
Location a

(± P) ku.)k k-2 k=4 k-n1/ k-2 k-4

o ±1 1.55 1.18 1.55 1.18
.5 1.51 1.22 1.92 2.36

1.0 1.55 1.63 h.51 8.60
2.0 5.13 7.99 47.09 77.35

3.0 23.30 31.20 232.36 311.65

4.0 62.57 75.67 625.65 756.66

0 ±2 3.54 2.81 3.54 2.81

.5 3.38 2."9 3.38 2.79

1.0 3.22 2.71 3.22 2.76

2.0 3.29 2.37 3.48 5.38

3.0 2.64 5.45 11.86 L7.41
4.o 11.20 23.35 lO9.60 232.41

5.0 4o.12 62.57 40l.o6 625.66

0 ±4 5.89 5.08 5.89 5.08
.5 5.64 5.08 5.64 5.08

1.0 5.39 5.08 5.39 5.08
2.0 5.89 5.0 5.89 5.07

3.0 5.37 4.87 5.37 4.93

4.o 5.47 4.I 5.66 7.00
5.0 3.72 6.0 12.94 48.03

6.0 11.38 23. 109.78 232.50

7.0 40.13 62.5 4ol.O7 625.66

!/The number of dose levels is 2k+l.
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Table 8.2.a

Information (Ia) for Estimation of the Mean of the Normal Tolerance

Distribution with Scale Parameter Known, for the Finite bperiment

Middle Dose N
Dose Range
Location ca (x)

0(-+. k-11/ k-2 k-3 k-4 k-8 k-20 k-4o

0 1/2 1.67 1.64 1.63 1.63 1.62 1.62 1.62

0 1 1.98 1.87 1.83 1.82 1.79 1.78 1.77

0 2 3.34 2.82 2.66 2.59 2.48 2.42 2.38

0 4 4.70 5.56 5.16 4.98 4.71 4.54 4.44

0 10 4.71 7.85 10.81 12.22 11.76 11.35 11.08

!/The number of dose levels is 2k+l.
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i.e. the greater the number of dose levels, the greater the

information.

Table 8.2.b presents the values of N/Cia(xo ) for

values of a, k and N, for values of Xo/.

8.4 Efficiency of the Spearman Estimator for the Finite Experient,

Scale Parametcr Known

The efficiency 1/ of thi Spcarman estimator for the finite

experiment will be defined as the ratio of the inverse of the

information to the mean square error of the estimator:

E a(xO) -i/Ia (xo) (8.4)
a MSEa( I x )

Table 8.3.a prcsents computational results for the normal

distribution for xo -p for sevcral values of a and k.

Table 8.3.b presents computational results for the normal

distribution for several values of a, k and 1; for values of

Xoj p.

8.5 Efficiency of the Spearman Estimator for the Finite Experi-

ment, Scale Parameter Unknown

Table 8.3.b indicates that the efficiency of the Spearman

1

The efficiency (E ) as defLned in terms of information
(8.4) is a useful measure bccausc the information is intrinsic
to the expcrimcnt itself and not dtkpeihdent on any method of
estimation. The inverse of the information cannot be taken
as an absolute lower bound on the variances of all estimators,
nor can it be assumd that there is any cstiriator with vari-
ance ti.is small. Howevtr, it is a lower bound for the vari-
ances .f all unbiased Lstinators.
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Table 8.2.b

Information (Ia) for Estimation of the Mean of the Normal Tolerance

Distribution with Scale Parameter Known, for the Finite Experiment

Middle Dose N
Dose Range 2 (
Location a )a(x)

0 ) (-+ a)

o ±1 1.98 1.87

.5 2.10 2.00

1.0 2.49 2.43

2.o 5.13 5.53

3.0 20.51 25.08

4.0 197.37 270.27

0 ±2 3.34 2.82

.5 3.33 2.86

1.0 3.36 3.01

2.0 3.90 4.09

3.0 6.62 8.55

4.O 22.78 34.18

5.0 205.48 328.95

0 ±14 5.56 4.98
.5 5.54 4.98

1.0 5.52 4.98

2.o 5.56 5.02

3.0 5.61 5.42

4.0 6.51 7.37
5.0 11.03 15.39

6.o 37.97 61.52

7.0 342.47 592.11

i/Tho number of dose lcvcls is 2k+1.
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estimator can be very small for NwIOO when the a priori

estimate, xo, for A is in error. The information was com-

puted assuming scale parameter known. If the scale para-

motor is unkncn the information is considerably decreased

for xo4 . Table 8.4 presents telernt I (x o ) of the

inverse of the information matrix for estimation of the

mean of the normal tolerance distribution for both location

and scale parameter unknown. Table 8.5 presents the cor-

responding efficiency (Ell ) of the Spearman estimator for

two unknown parameters. Tables 6.3.a, 8.3.b and 8.5 demon-

strate that for the u's aal finite level design with limited

numbers of subjects the Spearman estimator has high efficiency

relative to the information in the experimnt, when the toler-

ance distribution is normal.

9. REGULAR BEST ASYIPTOTICALLY N(.T24L ESTIMATORS WITH THE WRONG

MODEL

9.1 General Discussion

One advantage of the Spearman estimator is that no para-

metric form need be specified for the tolerance distribution.

This advantage would be of no practical importance if the

corpeting parametric estimator based on a common model has a

distribution that is insensitive to moderate changes in the

functional form of the true tclcrance distribution. In this

section computations are prescnted to illustrate the effect
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Table 8.3.a

Efficiency of the Spearman Estimator for the Mean of the Normal

Tolerance Distribution with Scale Parameter known, for the Finite

Experiment

Middle Dose
Dose Range Ea(x 0I
Location I

--
(1 a) k.- / k-2 k-3 k-4 k-8 k-20 k-40

O 1/2 3.27 4.56 5.09 5.43 6.00 6.48 6.75

0 1 1.28 1.58 1.73 1.82 1.97 2.04 2.13

0 2 .94 1.00 1.03 1.03 1.05 1.08 1.09

0 4 .39 .94 1.02 .99 .99 .99 .99

0 10 .06 .25 .56 .80 .95 .99 .99

Ea ao (xa o ) =o 1
2_/ I(x)iSE(ee x)

The num-ber of dose levels is 2k+1.
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Table 8.3.b

Efficiency (E a ) of the Spearman Estimator for the Mean of the Normal

Tolerance Distribution with Scale Parameter Known, for the Finite

Experiment

Middle Dose E (x
Dose Range a 0
Location

2/L N-10 N=IO0
a k-1 /  k-2 k-4 kal k-2 k=4

0 ±1 1.28 1.58 1.28 1.58

.5 1.39 1.64 1.09 .85

1.0 1.61 1.49 .55 .28

2.0 1.00 .69 .11 .07

3.0 .88 .80 .09 .08

4.0 3.15 3.57 .32 .36

0 t2 .94 1.00 .94 1.00
• .99 1.02 .99 o2

1.0 1.o4 1.11 1.O4 1.09

2.0 1.19 1.73 1.12 .76

3.0 2.51 1.57 .56 .18

4.0 2.03 1.46 .21 .15

5.0 5.12 5.26 .51 .53

0 ±4 .94 .98 .. 94 .98

.5 .98 .98 .98 .98

1.0 1.02 .98 1.02 .98

2.0 .94 .99 .94 .99

3.0 1.o 1.11 1.o4 1. 10

4.0 1.19 1.84 1.15 1.05

5.0 2.97 2.53 .85 .32

6.0 3.34 2.62 .36 .26

7.0 8.53 9.46 .85 .95

1/ _______.... _____

Ea x I(x o)M ijx)

The nimber of dose levels is 2k+1.
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Table 8.4

Inverse Information 1(I) for Estimation of the Mean of the Normal

Tolerance Distribution withi Scale Parameter Unknown, for the Finite

Experiment

Middle Dose NI (X )
Dose Range a 0
Location C2

. (kt2 k-2 k-,4

0 ±1 1.98 1.87

.5 2.4o 2.53

1.0 4.31 5.43
2.0 38.63 51.20

3.0 907.36 959.53

0 ±2 3.34 2.82

.5 3.33 2.87

1.0 3.37 3.13

2.0 4.71 6.98

3.0 66.80 62.94

0 o4 5.56 4.98
.5 5.54 4.98

1.0 5.52 4.98

2.0 5.56 5.03

3.0 5.62 5.63

h.o 7.85 12.57

5.0 111.33 113.30

a 11 (xo) is the elcnent of the inverse of the information
matrix corresponaing to the estinator of L

The number of dose levels is (2k+l).
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Table 8.5

Efficiency (Ell) of the Spearman Estimator for the Mean of the Normal

Tolerance Distribution with Scale Parameter Unknown, for the Finite

Experiment

Middle Dose Ell( )
Dose Range a o
Location

N-lO N-l00
(± a) k-1L1 ku'2 k-4 k-l k-2k=

a at

0 ±1 1.28 1.58 1.28 1.58
.5 1.59 2.08 1.25 .88

1.0 2.79 3.34 .96 .39
2.0 7.52 6.41 .82 .66

3.0 38.94 30.76 3.90 3.08

0 ±2 .94 1.00 .94 1.00

.5 .99 1.03 .99 1.03

1.0 1.o5 1.15 1.05 1.12

2.0 1.43 2.95 1.35 2.53

3.0 25.29 26.56 5.63 11.55

o h .94 .98 .94 .98

.5 .98 .98 .98 .98

1.0 1.02 .98 1.02 .98

2.0 .94 .99 .94 .99

3.0 l.05 1.16 1.05 1.14

4.o 1.44 3.14 1.39 1.79

5029.93 18.65 8.61 2.36

a 11( Xo)
/TE (x5b Xo )

2/The number of dose ioels is 2k +!.
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on some RBAN estimators I due to changes in the functional

form of the tolerance distribution.

The angular model is used and the characteristics of some

RBAN estimators based on this model are examined for true tol-

erance distributions with the forms: logistic, normal and

uniform. The experimental designs for which coputations are

given are one, two, and five level designs ith scale para-

meter known, and some two level designs with scale parameter

unknom.

The RBA. estimator used in each of these finite designs

is an explicit function of the independent binomial variates

corresponding to the several dose levels. Consequently the

mean and variance of the limiting normal distribution of the

estimator (as th sample sizes at the fixed dose levels in-

crease) can be computed. These values are called the asymp-

totic mean and asymptotic variare'. Since the esti.nator is

inconsistent whcn the wrong model is used, the asymptotic

mean square error is computed from the asymptotic mean and

variance and this value is compared with the asymptotic vari-

ance of the RBAN estimator under the correct model.

9.2 One Level Experiment

The model used for the tolcrance distribution is the

an&ular distribution (see Table 2.2). Assume that the scale

1ee Neyman (26) for the definition of RBAN (regular
best asymptotically normal) estimators . See Taylor (29) for
a discussion of REAN estimators in bioassay.
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parameter, ( , is known and that the experiment consists of

testing N subjects at the dose level, x-O. Let the observed

proportion responding at x-O be denoted by p and the e xpected

proportion be denoted by P. Let y-sin - r/4 . Then the

maximum likelihood estimator of p. is:

-*. (9.l)

The asymptotic me variance and mean square error of the

estimator, for a given value of P, are:

E - (9.2)

v&AG)- ( 1) (9.3)

MSE ( ) - L (1)+(. Y )2  (9.4)

where Y-sin 1 -F

and P-E(p).

If the true tolerance distribution is angular with scale

parameter then 4- - and the asymptotic mean square

error is the variance (9.3). Denote the angular distribution

by G. If the true tolerance distribution is FbG, then the

estimator will not be consistent. The asymptotic variance

will remain the same but the bias contribution to the mean

square error will not be zero.
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The asymptotic mean square enor can be computed for any

given F and N. Denote this value by MSE aA( F). In

specifying F it is necessary to choose the value of the scale

parameter. This should be done so that the F is "comparable"

to the model, G, with its known, fixed . Three methods

for choosing scale parameters for the tolerance distributions

are used: (i) equating standard deviations. (ii) equating

the distances between two specified percentiles. (iii) equat-

ing the information per observation.

As a measure of the effect of the tolerance distribution,

F, on the estimator based on G, the asymptotic efficiency,

EaA(GI F), is computed

MSE ((jG)EnaA( G I F ) a -.. ....

aA F)

Tables 9.l.a, 9.1.b and 9.1.c contain computational

results for F normal, logistic and uniform when the model is

angular. The results indicate that the differences due to

the several tolerance distributions are negligible even for

N of 100, when the tolerance distributions are equated on

distance between the 20th and 8Cth percentiles and the ex-

pected proportion responding is not too far from 50 percent,

say between 15 percent and .5 percent. However, when the

distributions are equated on standard deviation the asymptotic

mean square error does show a marked decrcase due to bias for

N of 100 for some values of P (e.g. for the logistic, E-.66
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Table 9.l.a

Asymptotic Efficiency (EaA) for an RBAN Angular Estimator for Three

Tolerance Distributions having Standard Deviations the Same as the

Model (One Dose Level with N Subjects)

Expected Per EaA(G I F)l/
Cent Respond4
ing at the
Single Dose N 10 I N 100
Level Log i s t i c Noral Uniform Logistic Normal Uniform

(F) (F) (F) (F) (F) (F)

1 .h3 .66 .69 .07 .17 .18
3 .92 .96 .89 .56 .71 .45

5 1.00 1.00 .97 .99 1.00 .78

7 .96 .99 1.0o .74 .93 .97

10 .91 .97 1.00 .51 .79 .96

15 .87 .96 .97 .40 .69 .78

20 .87 .95 .96 .34 .68 .69
25 .89 .95 .9 .45 .72 .68
30 .92 .97 .96 .54 .78 .72

35 .95 .98 .97 .66 .85 .79
4o .98 .99 .99 .81 .93 .88
45 .99 1.00 1.00 .94 .98 .97
50 1.o 1.0 1.00 1.oo 1.00 1.00

i/ Ea(G IF) - -S a% G)

YSE . ([4 1 F)

where F is the true tolcrance distribution andO is the

angular mode!. See (9.1) for the definition of j.&"
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Table 9. l.b

Asymptotic Efficiency (E&A) for an PJBAN Angular Estimator for Three

Tolerance Distributions having Distances Between the 20th and 80th

Percentiles the Same as the Model (One Dose Level with N Subjects)

Expected Per E (G
Cent Respond EA
ing at the
Single Dose N - 10 N - 100
Level Logistic Normal Uniform j Logistic Normal Uniform

(F) (F) (F) (F) (F) (F)

1 .15 .37 .50 .02 .06 .09

3 .4o .68 .68 .06 .18 .18
5 .62 .84 .81 .11l .34 .30

7 .78 .92 .88 .27 .53 .44

10 .92 .97 .95 .53 .78 .68

15 .99 1.00 .99 .92 .97 .94

20 1.00 1.00 1.00 1.00 1.00 1.00

25 0/ 1.00 l.30 .98 .99 .99

30 .99 1.00 1.00 .96 .99 .97

35 1.00 1.00 1.00 .97 1.00 .97

[o 1.00 1.00 1.00 .99 1.00 .99

45 1.00 1.00 1.00 .99 1.00 1.00

50 1.00 1.00 1.00 1.00 1.00 1.00

-aA 'I

vhere F is the true tolerance distribution and G is

the anglar model. See (9.1) for the definition of I"
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Table 9. 11 c

Asymptotic Efficiency (E a ) for an RBAN Angular Estimator for Three

Tolerance Distributions having Information the Sam as the Model

(One Dose Level with N Subjects)

Expected Per-E A G ) )
Cent RespondE(
ing at the
Single Dose l i0 I N -I00
Level Logistic Nornal Uniform Logistic Normal Uniform

(F) (F) (F) (F) (F) (F)

1 .11 .01 .01 .01 .00 .00

3 .20 .Oh .0 .02 .00 .00

5 .30 .09 .10 .o4 .01 .01

7 .50 .17 .19 .07 .02 .02

10 .58 .32 .38 .12 .o4 .06

15 .64 .64 .70 .15 .15 .19

20 .80 .71 .75 .28 .20 .23

25 .89 .86 .88 .45 .38 .42

30 .95 .9 .95 .66 .60 .64
35 1.00 1.00 1.00 1.00 1.00 1.00
40 1.00 1.03 1.00 1.00 1.00 1.00

45 1.00 1.00 1.00 1.00 1.00 1.00
50 1.00 1.00 1.00 1.00 1.00 1.00

1/ .E(GJF) 4.r

Y, EaA ( I

where F is th6 true tolerance distribution and G is

the angular model. See (9.1) for the definition of



at P-35 percent, and E-.34 at P-20 percent). Equating in-

formation shows even larger effects on the efficiency for

mall valuos of P.

The results for the angular model and estimator have

been corroborated by repeat.ing the computations for the log-

istic model and its estimator. Results analogous to those

in Table 9.1.b are presented in Table 9.2 for the logistic

estimator.

Since the results presented are asymptotic approxima-

tions, it is of interest to see whether the relationships

indicated by these conputations are valid in the range of

sample size used. Exact computations analogous to Table 9.1.c

are presented in Table 9.3 for 1110.

9.3 Two Leel Expriment

Again let the modcl and estimator be based on the angular

distribution (Table 2.2). Let the expcriment consist of iii

subjects tested at x=: l - -- and JN subjects tested at

x-x2 -J . Let o and P. be the observed and expected proportions

respectivel y, i-1,2. Let yi sin - /4

If the scale par-ne- r, , is knwn, the RBAN estimator

used will be denotcd by ' and is:

- -

w2

where y (y,'f,'2)
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Table 9.2

Aymip otic Efficiency (E..) of an RBAN Logistic Estimator for Three

Tolerance Distributions having Distances Between the 20th and Uie

8Oth Percentiles the Same as the Model (One Dose Level with N

Subjects)

Expected Per F17

Cent Respond- EA(
ing at the
Single Dose _N - 10 H - 100
Level Norn1 An.. tifor Norua A lar Uio'..

(F) (F) (F) (F) (F) (F)

1 .94 .79 .65 .63 .27 .16

3 ,96 .83 .67 .70 .32 .17
5 .97 .88 .74 .79 42 .22
7 .99 .92 .81 .86 .55 Jo

10 .99 .96 .90 .93 .74 48

15 1.00 1.00 .98 .99 .94 .85
20 1.00 1.00 1.00 1.00 1.00 1.00
25 1.00 1.00 1.00 1.00 .98 .Al

30 1.00 1,00 1.00 1.00 .97 .89
35 1.00 1.00 1.00 1.00 .97 .88

10 .100 1.00 1.00 1.00 .98 .93
45 1.00 1.00 1.00 1.00 .99 198

50 1.00 1.00 1.00 1.00 1.00 20

BOAi (G IF)

where F is the true tolerance distribution and G is

the logistic nodel.
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Table 9.3

Exact Efficiency (E) for an RBAN Angular Estimator for Three Tol-

erance Distributions having Information Equal to that for the Model

(One Dose Level with 10 Subjects)

Expected Per
Cent Respond- Ea(G I F)!/
ing at the
Single Dose Logistic Normal Uniform
Level (F) (F) (F)

1 .o6 .01 .01

3 .17 .06 .06

.29 .18 .21

7 .41 .37 .-
10 .56 *66 .76
15 .76 .94 .98
20 .89 1.01 1.02
25 .95 1.01 1.02
30 .98 1.01 1.01

35 .99 1.00 1.00
4O 1.00 1.00 1.00

45 1.00 1.00 1.00
50 1.00 1.00 1.00

% (G F) U ' (1 F)

where F is the true &clerance distribution and G is

the angular model.
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If the scale parameter is not known, the RBAN estimator

used will be denoted by p 2 and is:

' Z(9.6)
Y2-yl

The asymptotic means, variances and mean square errors

for the two estimators, for given P1 and P2 are:

- - y1+Y2  (9.7)

where Y- i 1 .T SinT/

v L* ) a 1 (9.8)

MSE (*)41 1 + + 1 2  (9.9)aAi2 4 2

E, (*)" - 2.2 (9.10)
A 2 2 (Y2 -Y,)

2 .2

1 (911)

22,(Y 2 -Y 1)

yE (' I 2 +Y2 Y2+YI, 2

*1

If the t olerancc distribution is angular, p2  is consist-
2*

entg and if, in addition, the scale parameter is then 2

is corsistent.
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Denote the angular tolerance distribution by 0. If the

true tolerance distribution is F9G, then both estimators will

be inconsistent. The asynptotic mean square error can be

determined for given F and N, for specified values of P1 and

P2  Tablos 5.a ahd9.4.b present asymptotic efficiencies of 2
2 

2

and *2 for F taken to be logistic when the model is angular.

The results in Tables 9.4.a and 9.h.b show that in both cases

the effect of a change in F from angular to logistic has

little effect on the asymptotic mean square error of the

angular estimator.

9.-4 The 2k+l Level Experirnent

Again let the model and estimator be based on the angular
N

distribution. Let the exoeriment consist of N- subjects

tested at each of 2k+l levels. Iot the dose levels be

1-.+l i 1 1 k-I 1ST, -k I,*... P 0) , -. .

Let the observed proportions be denoted by p and the expected

proportions by Pi" Let yi" sin-i - R/4

If the scale parameter, , is known, then the maximum

likelihood estimator is denoted by * and is

* - (9.13)

5 k
Z Yv

-k
where Y - 2k~l

The asyrptotic mean, Variance axid mean square error of the



78

Table 9.4.a

Asymptotic Efficiency (E..) for an RBAN Angular Estimator for the

Logistic Toleranoe Distribution (Scale Parameter Knowni: Two Dose

Levels, JN Subjects at each Dose Level)

E'pected Per Cent Responding EaA(G F)i/
Lower Upper
Level Level N-1 Nu-10(pl) ~(p2) N-i 0

10 15 .70 .19

10 20 .80 28
10 30 .93 .56
10 40 .98 .88
10 50 1.00 1.00

10 60 .99 .94
10 70 .98 .88

10 80 .98 .89
10 90 1.00 1.00

20 40 1.00 .97

20 60 1.00 .99
20 80 1.00 1.00

4o 50 1.00 1.00
40 60 1.00 1.00

(G/I F)EaA 42 ) I )

;E(A IF)

where F is the logistic tolerance distribution and G

is the angular model. See (9.5) for the definition
Of I2"
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Table 94.b

Asyvptotic Efficiency (EaA) for an RBAN Angular Estimator for the

Logistic Tolerance Distribution ( Scale Parameter %nknown: Two

Dose Levels, iN Subjects at each Dose Level )

Epected Per Cent Respondi EaA(G IF)! /

Lower Upper - _... .. ... ....
Level Level N l10

(P1 ) (P2) 1 -

1o 15 1.00 .96

10 20 .99 .92
10 30 .99 .91

to 4o 1.0o .96
10 50 1.00 1.00
q 60 .99 .96
10 70 .98 .89

10 80 .98 .89
30 90 1.00 1.00

20 40 1.00 .99
U 60 1.00 1.00
20 80 1.00 1.00

4050 1.00 1.00

4060 1.00 1,00

(* G)
J (GjF&A

'5A i42  F)

where F is the logistic tolerance distribution
and G is the angular odel. fee (9.6) for the
deftidtion of g 2

24
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estimator are, for given i

* ( * (9.14)

where Ygsin 1 fi -

k
z Yi

and Y -k
2k +1

v (9.15)

-( + (+ )2 (9.16)

When the distribution is angular, the estimator is

consistent. Let the angular tolerance distribution be denoted

by G. For FAG, the asymptotic mean square error can be calcu-

lated. For G located to give a specified set of Pi a com-

parable F must be chosen. An F cannot be chosen which will

give the same values as the model at all levels. In the com-

putations F was chosen to give the same values at the end-

points of the range of dose levels, i.e. at Xk and 1.

Table 9.5 presents the results of computations for the case

of five dose levels, angular estimator, and the logistic tol-

erance distribution. The effect of the F on the asyrptotic

mean square error is again seen to be negligible. In fact the

results for five levels, P known, duplicate almost exactly the

results for two levels, known (Table 9.4.a).
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Tas. 9.5

Asyptotic Efficiency (EuA) of an RA&N Angular Estimator for the

Logistic Tolerance Distribution ( Scale Parameter Known: Five Dose

Levels, N/5 Subjects at each Dose Level )

Expected Per CentRepnigEa(IF!
Lowest Highest
Dose Dose(Pl) (P5 N. 10 N 100

10 15 *70 .19

10 20 .79 .27

10 30 .91 50

I0 40 .96 .74

10 50 .99 .92

10 60 1.00 .99

10 70 1.00 1.00

10 80 1.00 1.00

10 90 1.00 1.00

~/ E.(QfIF) - ,
aEAA ( F)

where F is the logistic tolerance distribution

and G is the angular model* See (9.14) for the

definition of
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9.5 Sumary of Wrong Model Investigation

The above computations indicate that in the case of para-

metric estimation a model can be chosen and slight deviations

of the true tolerance distribution from th o d fietional

form will have litt]', effect on the nean square error of the

estimator. (It is important that the tolerance distribution

have about the same spread, measured in interpercentile de-

viation, anticipated in the model, if the scale parameter is

assumed known.)

Previous sections (7, 8) have shown that the Spearman

estimator is a very efficient estimator compared with the

amount of information available in the experiment. This

section indicates that this efficiency would not be greatly

increased if comparisons were based on the mean a quare error

of fully efficient parametric estimators taking into consider-

ation the possibility of using a wrong model. In spite of this

apparent robustness of the paramtric estimators, the

Spearman estimator is reccmyled for use in most quantal assay

experiments because of its simplicity and high efficiency.
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APPENDIX I. THE DISTRIBUTIO FUNCTIONT A1D INFORMATION FORME
INFINITE EXPENI12T

I.1 Distribution Functiom for the Infinito Experiment

Lerna I.1 Let F(x) be a tolerance distribution. Specify a value

for d. Choose x0 randomly from the interval (O,d). Let

x i=X +id, i-O,±l,±2,.... . Toke n observations on a Bernoulli

variable with expected value F(xi) for i-O,±l,±2,.... Let

all the observations be independent. Let ri be the number

of responses at xi . Then this infinite experiment determines

a probability function for the r i on the infinite sample

space.

Proof: Since the ri are independent sums of independent

Bernoulli variables, the distribution functions for finite

sets of t he ri satisfy the consistency conditions on page 29

of Kolmogorov (2h). The lemma follows imsediately from the

theorem on the same page.

1.2 Information for the infinite Experimnt Scale Parameter Known

The information for the infinite experiment will be

defined as the limit as k-- - of the information for the

finite experiment, with dose levels xi-x0 +id, i-O, ±1, ±2,

... ±k, and x0 randomly chosen.

The information for the finite experiment with f ixed

x is

[ dnh1 2

I k(XO) - E -

whera b is the density of the finite sequence of binomial
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variables r, i-O, ±t1 -2, ... ±k.

h -T (Ti) Fi1 (l-Fi)nri
-k

I k (x0) 0-,where? F 4 XM
-k Fi (l-Fi)

The information for the infinito experiment, I, will

be defined as

I k-im Ex[Ik(xo

d 2

1 k nFi - lira _2 8 i  .. dx

k -- - -k Fi (1-Fi) 0

0

1=n  - dt
d F(I'F)

It can be shown that if V is a translation

parameter then I is finite.

1.3 Information for the Infinite Experiment, Scale Parameter

Un)nown

Let F be written F[*(x-L). The information matrix

for the infinite experiment will bc d efined as the matrix

obtained as k-+- for the finite experiment.
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The information matrix (I)ij for the finite experiment

with given x0 is

2~ nFF
Z F(1.Fi) z Fi(-F)

-k -k

Iij (x° nF 4 F i 2i
zZ

-E Fi(1.F ) z

L -k i i-k F i(1.F i)

If x is randomly chosen and the limit is taken as k--

the matrix is:

" F dt n dt

F(1-F) Pd F(1-F)

StF'12 t2 F,12(n1F dt n dt

d F(I-F) 3d F(l-F)

The element of the inverse matrix corresponding to L is:

t2F 12 t
(3 d F(l-F)

F 2 2 '2 12 t 2 "
- dtj - dt - n

dJ~lF FQl-F) d2F(1-F)J

2

A
AI1+ A2

n F2 Adt 2
d F(l-F)
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where

\t F 2 dt
F (1-F)

F12 dt

SF (1-F )

12 F2

(t- A) -dt

A- J F( 1-F)

F (1-F)
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APPENDIX II. BEE4OULLI PERIODIC FUNCTIONS AND THE EULER-
MACLAURI FORMULAE

I1.1 The Bernoulli Periodic Functions

The Bernoulli periodic functions, P n(t), and the Euler-

MacLaurin formulae are presented here. For details of the

development of the formulae the reader is referred to Cra-

mer (11) pp. 122-125.

The Bernoulli periodic functions are:

P2n(t) - cos kit n-l,2,...

k-l 22n-l (kTT) 2n

Pn+lt) z sin kTIt n-O, i, 2,...k-i 22n(k -)2n +l

These functions satisfy

Pn(t) . (_i) n - 1 Fnlt W .

n n-l

The first three Bernoulli functions are (see reference I,

p. 138):

p!(t )  t i. < ,< 1~

P2(t) t 22 0< t <t1

-2t t2 t3

P3 (t) r - 2 0- ot(1

In paragraph 4.2.7 the sup P n(t) is desired for n-1,2 and 3.
t

Using the polynomial expressions, the following are obtained:
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sup Pl~) M -i
t1

sup P 1 (t) -t

su P2 (t) a

sup 7(t) - .0080...

t

11.2 The Euler-MacLaurin Formulae

Let x and d be constants and let the i term in a
0

finite sum be g(x +id). Let g be continuous with a continu-0

ous derivative g . Then the f irst Euler-MacLaurin formula is:

z g(Xo0+id) g(Xo0+Xd)dx + (0-k)+ x0+d
-k

-kk
-kk

-d P1 (x)g'(xo+xd)dx

-k

If g has continuous derivatives of higher orders repeated

integration by parts gives the Euler-HiacLaurin formulae:

k k  1
7 g(xo+id) g(x +id)dx + 1 g(xo-kd) + g(xo+kd)

-k -k

s " 2i d 2i - 1 g 2i-I ) _ ( 1 ) x

1 (2i),

k

+(-l)s+lis+l I P2s+l (x)g(2S+l)(x o+xd)dx

-k

where s is any non-negative integer, g must exist for

j=l,2,...(2s+l), and B. are the Bernoulli numbers, defined by:

-B

0 1 0j
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The f irst Euler-MacLaurin formila given. above can be applied

to an infinite sum to obtain:

g(xo+id) - g(xo+xd)dx - d \P(x)g (x+xd)dx

provided that the series and the two integrals converge.
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APPENDIX III. ESTIMATION OF THE VARIANCE OF THE SPEAWIAN ESTIMATOR

111.1 An estimator for V(i)

An obvious estimator for the variance of the Spearnman

estimator is:

2 d2- i
s d piqi (if 2 converoe).

Then

E( 21 x.) - VjI x)

The f ollowing results can be obtained for this estimator

for the infinite experiment with random choice of x0, follow-

ing the same methods used for obtaining the characteristics

of i.
2

If F has a first moment, s- converges with probabilityx

one and has the following mean and mean square error.

.( 2) F(1-F)dx (
- nxJ

HEE(s 2) n.- -n F 2(1-F) 2dx
i n 'n(n1)

222 2

+ \F(l.F)dx~ + Ex[B2(&-IX0]

where B2 ,(&- Ix) denotes the bias of s- as an
x1  0 x

estimate of V(i) (5.4), conditional on x.

Unlike the case of i, where it can be shown that the

MSE(i) is a minimum for n-I when n'-n/d is fixed, for s-

.- - SI
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the optimum choice of n for n' fixed will depend on F. For

the normal tolerance distribution MSE(s 2) decreases as n

increases but the decrease is negligible for n greater than

4. In this case, then, the optimum designs for estimation

of ji and of 7(i) do not agree, but a good compromise would

be to choose n-4, say.

111.2 An Alternative Estimator for V(Z) Based on the Second

Moment of F

Table 5.1 shows 7(i) to be a function of the scale

parameter:

7(i) -nL CF (11.1)

where CF is a constant depending on the parametric formula-

tion of the tolerance distribution. The constants for the

normal, logistic, angular and uniform distributions are

.5642, .5513, .5750 and .5774 respectively.

If the constant CF is considered over all distribution

functions, the function defined tV:

2P(a- ) a- > 0

P(X- a)

a

will have - , so that CF is arbitrarily close to zero

r+a

for small a. There is a wiique maximizing function for C F
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over any given finita -interval (see Rustag*, and it can

be s hown by a calculus of variations argument that the

uniform distribution is this function (CFw.5774).

An alternative estimator (s 2 ) for V(i) suggested ty

(II.l) is:

*2 d (xi +d/2 _ )2 (p-

OR U i+-l
*2

The estimate of a used in s- is the Spearman type of esti-
x

mator suggested by Epstein and Churchman (14) and shown ty

Cornfield and Mantel to be an algebraic approximation to the

maximum likelihood estimator of a for F logistic.

YSee Rustagl, Jagdish Sharan, "On Minimizing and Maxi-
nizing a Certain Integral with Statistical Implications,"
Annals of Mathematical Statistics, 28 (1957) 309-328.
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